Three laws Notes Page 1 of 4

DYNAMICS handout

III.	Dynamics - study of t	ne relationship between	and
------	------------------------------	-------------------------	-----

A) Newton's Three Laws of Motion

1st Law of ____

"An object at rest tends to stay at _____.

An object in motion tends to stay in _____ in straight line unless

acted on by an **unbalanced** _____."

Another words ... If a moving object has no unbalanced force on it, it would

The larger the mass, the ______ inertia

2nd Law Relationship between _____

Applying an unbalanced force on an object causes that

object to _____according to the equation

$$(m)$$
 a = ____(N) (Kg)

1. **Acceleration** is _____ related to the **force** exerted on that object.

а	F
	X 3
	x 2
	÷ 3
	÷ 2

2.	The acceleration	a given for	ce will produce	e on an object is
----	------------------	-------------	-----------------	-------------------

_____ proportional to the mass of the object.

$$F = 10nt$$
 $F = 10nt$ $m = 2kg$ $m = 4kg$ $a = 5 m/s^2$ $a = ___m/s^2$

а	М
	÷2
	x2
	x3

3. <u>Inertial mass</u> (solve for m) You can calculate the mass of an object by

Inertial mass **m =**

4. Standard equation F = ma

(N) (Kg) (m/s^2)

Newton - defined - force needed to give a _____ of mass an

acceleration of _____

Derived unit - A unit that comes from the _____

 $N = Kg m/s^2$

<u>Fundamental unit</u> - (opposite) _____

Force Questions

Ex1) What is the force necessary to give a 3kg mass, initially at rest, an acceleration of 5 m/s 2 ?

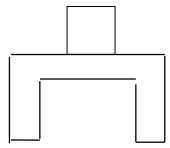
Three laws Notes Page 3 of 4

F = ma

Ex2) A force of 30 nt accelerates an object by 15 m/s2. Find the objects mass.

F = ma

- **Ex 3**) An unbalanced force of 100 nt acts on a 50kg mass for 5 seconds. Find the acceleration of the mass
 - **Ex 4)** A 10 kg cart moving with a velocity of 2m/s is brought to a stop in 2 sec. Find magnitude of the average force used to stop cart.


3rd Law of Motion

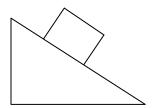
For every action there is _____

A lamp applies a force of 10 N to a table. What force does the table apply on the lamp? Which direction is this force applied?

B) Free Body Diagrams - diagrams that show the forces acting on an object

Ex1)

Three laws Notes Page 4 of 4


Weight = mg

About the Normal Force

- (1) _____ force supporting an object
- (2) Always drawn ______to surface where 2 objects meet
- (3) When an object is placed on a horizontal surface

Ex 2) Object on an incline plane

Ex 3) Force on a falling object

