Energy Handout

II.	Enorav	/Jaulas	\ _ ?	kinda
II.	Energy	(Joules)) - Z	Kinas

- A) Potential Energy - ______ energy of that an object has due to its
 - Gravitational P.E. $_{\alpha}$ (PE is an abbreviation for Potential Energy)

P.E. $_{a}$ = ______ g - on earth = _____

units

 $\Delta P.E. = _$

Ex 1) What P.E. is gained when a 100kg object when it is raised 4m straight up?

 $\Delta PE = mg\Delta h$

Ex 1a) What PE would be gain if the object were moved 4m to the right?

- 2. Elastic P.E. - work stored in a deformed spring
 - **General Equation** a)

 $PE_s = F \cdot x$

 \mathbf{F} = Average F needed to deform spring \mathbf{x} = distance deformed

b) Hookes law - _____needed to **deform** an **ideal spring**, a given amount is directly **proportional** to its ______

Example) Ideal Spring X

F (force to deform) X (distance deformed) 2N .3m 4N 6N 8N Force (N)

> Stretch (m) slope = F/X

c) Spring constant for ideal Spring X

$$K = F/X =$$

d) **Elastic P.E.** = area of triangle under F vs x graph

PEs =

- e) PE_s in terms of k
 - 1. P.E._s = _____ **Average Force:** _____
 - 2. PE =_____ F = Kx (On reference)
 - 3. **P.E.**_s = _______ (On reference)
- Ex1) A force of 12 N stretches a spring and makes it .15m longer.
 - a) What the spring constant (k) of this spring?
 - b) What's the potential energy of this spring?
- B) <u>Kinetic Energy</u> the energy an object possesses due to its _______

 Work/Energy Relationship: The kinetic energy an object possesses is equal to the ______ done to get an object moving a certain speed or to stop it.
- **Equation....** K E = _____
- **Relationships:** K E / m _____ KE/ v _____