CONSERVATION OF MOMENTUM notes | II. LAW OF | |---| | In a closed system: | | Collision Problems | | Example 1) A 3 kg object traveling 6 m/s east has a perfectly elastic collision with a 4 kg object traveling 8 m/s west. After the collision, the 3 kg object will travel 10 m/s west. | | 1) Find the total momentum BEFORE the collision. | | Total momentum before = | | 2) What is the total momentum after the collision? | | 3) What is the velocity of the 4 kg object after the collision? | | Example 2) A 10kg Block A moves with a velocity of 2 m/s to the right and collides with a 10 kg Block B which is at rest. After the collision Block A stops moving and Block B moves to the right. | |---| | a) Find the total momentum after the collision | | b) Find the velocity of Block B after the collision. | | Example 3) A 10 kg cart moving with a velocity of 10 m/s East collides and attaches itself to a 10 kg cart moving at a velocity of 50 m/s west. | | Draw a quick picture | | 1) Find the total momentum before the collision | | 2) Find the total momentum after the collision | |--| | 3) What is the velocity of the attached carts after the collision? | | B) Recoil Problem - When interacting objects start from rest | | Example 1) A 4 kg rifle fires a 5×10^{-3} kg bullet at a velocity of 500 m/s. What is the velocity acquired by the rifle? Total Momentum Before Interaction = Total Momentum After Interaction | | | | Why is the total momentum before Zero??? | | Subtract m ₂ v ₂ from both sides | | In problem Solving, remove negative sign and use | | (Not in Reference Table) ******* | | Important: Regents almost always has an question that asks you to use this equation | | Example 2) 2 magnets of 1 kg and .5 kg are arranged at rest on a horizontal frictionless surface. When the strings holding them together is cut they move apart under the magnetic force of repulsion. | a) What is the total momentum of the magnets before the string is cut? ## CONSERVATION OF MOMENTUM notes | D) | What is the total momentum of the magnets after the string is cut? | |----|--| | c) | What is the velocity of the .5 kg mass when the velocity of the 1 kg magnet is 30 m/s? |