D) .	D) <u>Friction</u> - force between 2 surfaces that oppose motion							
	•	ends on:	_					
	1)	of each surface						
Two kind	2) ds of friction		that	holds objec	ts together			
f,	s ¹⁾		ction - force of at		t must be overc	come to move		
	f _k 2)	Kinetic Friction - force of friction that opposes a object.						
Kinetic f	riction is		_than static fr	riction	fk fs			
	<u>Equations</u> o find static f	friction:	fs= us Fn	To find k	inetic friction:	fk = uk Fn		
	fs = fo	rce of		friction	1			
	fk = fo	rce of		friction	1			
	Fn = _		force (The upward	I resisting force)			
U s = 0	coefficient of		friction	on - "the		number"		
U k = c	coefficient of _		friction	ı - "the		number"		
	 2.		experimentally		surfaces in conta	act		
FRICTI	ON force - ve	ector always	drawn			.1 .		
		Fricti	ion	Applied	l Force			
	*** A	t constant	velocity : F ap	plied				
****	When object	t is moving	on a horizon	tal surface	e: Fn =	_=		

On a horizontal surface:							
f s = f k =							
Question 1							
If an object is moving on a horizontal surface and you doubled the weight force on the object, how would that change the kinetic friction force?							
Answer - (Hint: weight force = normal force on horizontal surface.)							
Question 2							
On a horizontal surface							
Static Friction equation Kinetic friction equation							
f s= Fn Us = f k= Fn x Uk =							
Look at the equations above.							
1) What would happen to the kinetic friction (fk) if:							
a) Uk (the roughness number) were halved?							
Answer -							
b) You doubled the weight force (F)? Answer							
c) you turned the block on its' side?							
FRICTIONAL PROBLEMS							
***** Remember Fn = Weight = mg when the object is on horizontal surface							
EX) A 5kg Steel block is resting on a *horizontal table*. The coefficient of static friction (Us) is 0.75 and the Uk is 0.57.							
a) What is the minimum force is needed to start this block moving (fs) ?							
b) What is the frictional force on this object as it <i>moves?</i>							
What force must be applied to the object to keep it moving at constant velocity ?							
(Hint: F net = 0) Answer							
-							

riomentam the property of moving object has that makes it	Momentum - the pro	perty of moving o	bject has that makes it	
---	--------------------	-------------------	-------------------------	--

Momentum = _____ x _____

- a) _____ quantity
- b) p has same direction as _____
- c) units kg×m/s

1) Relationship between force and momentum

When a **Force** acts on a body it <u>changes</u> its' _____

Showing the mathematical relationship

$$p = m \times v$$

$$F = m \times a$$

F = ____ Force is the time rate of change in _____

Cross multiply and you get = _____

The change in momentum that an unbalanced force produces on an object depends on

_____the force acts on a body.

2) Impulse F x t = J

Combining all the equations

Write on your test immediately before answering questions

ex1) A 5kg mass has its velocity change from 8 m/s east to 2 m/s east. Find the objects change in momentum

ex 2) A 5kg mass moving with a velocity of 8 m/s east has an impulse applied to it causing its velocity to change to 20 m/s East.

Find the Impulse:

Find the force if the impulse was applied for 3 sec.

ex 3) How long would it take for a net upward force of 100N, to increase the speed of a 50kg from 100 m/s to 150 m/s.

ex4) A 1.0kg ball traveling @ 4 m/s strikes a wall and bounces straight back @ 2m/s.

Find _____

- (a) = = ____
- (b) What is impulse applied to the wall?